Researching real-time lightweight fire detection software compatible with a doorbell camera for home fire alerts

Al Fire Detection

Duncan Grimes, Ricky Osgood, Justin Cheon

Infroduction

Background

Wildfires have destroyed over 16,000 structures in California
throughout 2025. More than 22% of homes in the USA have a
doorbell camera. These smart home cameras will notify the
homeowner of an intruder, but they send no alert if fire appears
INn the camera frame. This inspired our feam to research
lightweight fire-detection software compatible with a regular
doorbell camera.

Doorbell Camera Footage during Palisades Fire, 2025

Objective

Create a real-time Al fire-detection and alert system that will
notify users within 30 seconds of a fire appearing in the frame of
their home security camera.

Methodology

Based on time and budget consiraints, we elected to use a
pre-tfrained machine learning model to detect fire in an image.
We found a binary image classifier and generated our own
validation dataset of images, with and without fire, to verify the
model’s accuracy on areal camera. We then plotted ROC
curves with our validation data and experimented with
different thresholds and preprocessing techniques to optimize
our model.

Pre-Existing Research

Fast inference was a high priority for our feam, so we sought out
high-accuracy fire detection models with minimal complexity.
We came across a model called ShuffleNetV2-OnFire, trained
with the lightweight ShuffleNet architecture (pictured below)
boasting 95% accuracy for full-frame binary fire classification
with public access under the MIT license.

Normal
Cell
x1 x3 x1

Normal Normal
o e e - s

x7 x1 x3 Reduced
Parameters

ShuffleNetV2-OnFire architecture

Researchers from Durham University in the UK used over 26,000
Images in the fraining and validation process to create this
model. The model was implemented in PyTorch and trained for
40 epochs using Stochastic Gradient Descent with a learning
rate of 0.0005. They also utilized transfer learning from
ImageNet-pretrained models, initially freezing most layers and
then unfreezing specific final layers for further funing on the fire
detection dataset

Methods

Data Collection

To determine the accuracy of the ShuffleNetV2-OnFire model,
we created a validation set of fire and non-fire images. We
collected these images on a webcam in a range of natural
lighting conditions, from daytime to nighttime. Fire was
INnfroduced by igniting cardboard in a controlled setting
outdoors, simulating realistic visual characteristics of small-scale
open flames.

No fire in daylight

Fire at night

No fire at night

We conducted multiple trials in which we started collecting
Images on the webcam § seconds before lighting the fire,
capturing a frame every 2 seconds until the fire burned out. We
varied the camera angle as well as the fire's location and size
to increase data diversity. This approach allowed us to isolate
fire-related visual features while capturing varied perspectives
and lighting environments.

After we finished gathering this data, we manually labeled the
Images as ‘fire’ or ‘no fire' to give us ground truth for our
experiments. The counts are shown below.

Light Conditions Fire No fire Total

Daytime 87 32 119

Nighttime /7 6 83

Total 164 38 202
Experiments

We tested the ShuffleNetV2-OnFire model using the daytime,
nighttime, and aggregate data we collected. We began using
the default threshold of 0.5 for binary classification.

We later experimented with various pre-processing techniques
to improve the model’'s accuracy, including adjusting color
ratios, tweaking brightness and contrast, and rotating the
frames. Additionally, we explored architectural changes by
replacing the model’s final global average pooling layer with a
global max pooling layer. We also tested multiple threshold
values to fine-tune the sensitivity of the fire deftection output,
both during the day and at night.

Results

Key Metrics
True Positive Rate (TPR): of all images that contain a fire, what

percentage did the model predict as fire?
False Positive Rate (FPR): of all images that did not contain a

fire, what percentage of images did the model predict as fire?

Analysis of Original Model

Here we look at the TPR and FPR of our model with the default
threshold of 0.5, examining the daytime, nighttime, and
aggregate datasets.

TPR and FPR of Original Model (Threshold = 0.5)
100

I True Positive Rate 93.5%
I False Positive Rate

80 -

)]
o

45.1%

Percentage (%)
D
o

20 -

0.0% i 0.0%
Aggregate Daytime

0.0%
Nighttime

Across all data segments, our FPR was 0%, meaning we had no
Issues with false positives, regardless of light conditions. At a
threshold of 0.5, the model was able to identify only 2.3% of the
fires in the daytime images, meaning the model was practically
useless during the day. However, it was able to correctly
identify 93.5% of the images that contained fire at night, @
result strong enough for production use.

Model Optimization
We then tried various optimization technigues, examining the
model’'s TPR and FPR on the aggregate data (day and night).

TPR and FPR by Optimization Strategy
100

B True Positive Rate

B False Positive Rate 85.4% 84.2%

0
o
1

o))
o
1

45.1% 47.0%

Percentage (%)
S
o

N
o
1

o

One method we used was taking 4 rotations of an image (0°,
?0°, 180°, 270°) and seeing if the model predicted fire in any of
these. This slightly improved the TPR without increasing the FPR.
However, this makes inference 4x as expensive per image,
meaning it is not practical for production.

We also tried changing the final global average pooling layer
to a global max pool. While this greatly improved TPR to 78.7%,
It raised the FPR to an unacceptable level of 31.6%

Finally, we experimented with increasing the threshold for
binary classification. As we increased the threshold from 0.9 1o
0.9999, we saw a steady improvement in TPR, peaking at 85.4%,
but this came at the cost of raising the FPR to an impractical
84.2%.

Results (cont.)

ROC Curves

We further explored threshold tuning by identitying different
optimal thresholds for the distinct light conditions. We plotted
Receiver Operating Characteristic (ROC) curves using our
daytime, nighttime, and aggregate data segments. The
model’s overall performance at a given threshold is measured
by Area Under the Curve (AUC), with 1.0 being perfect and 0.5
being truly random.

ROC Curves for Daytime, Nighttime, and Aggregate Data

1.0 41— ' rd
P, =
f o
”
”
.O 7] | 3 P Z/’

o
(o]

o
(o))
1

True Positive Rate
g

o
[N}

— —— Aggregate ROC
— Daytime ROC
—— Nighttime ROC

| === Random Classifier

o
o
1

O.IO 0.' 2 0.'4 0:6 0.l 8 1.'0
False Positive Rate

Data Type Optimal Threshold TPR FPR AUC

Aggregate 0.999 76.3% 25.0% 0.743

Daytime 0.999 90.6% 47 1% 0.604

Nighttime 0.608 100.0% 6.5% 0.974
ROC Analysis

The ROC curves confirm that the model performs well at night
(AUC = 0.974), with perfect TPR and low FPR, but struggles
during the day (AUC = 0.604). The aggregate AUC of 0.743
reflects this imbalance, reaffirming that the model lacks
robustness across lighting conditions. For our daytime data, @
high threshold of 0.999 increased the TPR from 2.3% to 90.6%.
While significantly raising the threshold improves TPR, this leads
to unacceptable increases in FPR (from 0% to 47.1%), making
this strategy impractical for real-world use.

Discussion and Conclusions

Using the weights from ShutfleNetV2-OnFire, we wrote a Python
script that can identity fire in real-time using any webcam
attached to the user’s laptop. We used the threshold 0.5, as
any higher threshold results in false positives. The only input
required is the user’'s email address. When the script is run, the
webcam is launched by OpenCV and captures a frame every
2 seconds. The classifier then predicts if the frame confains a
fire. If the model predicts a fire, an alert is emailed to the user
from the Resend API.

In its current state, if we were to pitch our project 1o a home
security company, we would recommend activating the
software 30 minutes after sunset and deactivating it 30 minutes
before sunrise. In a dark setting this software will identify a fire in
the first frame in which it appears 93.5% of the time, with no
false positives. On average, the user receives the alert in under
10 seconds from the fire appearing on camera. To truly improve
the model’'s accuracy for daytime fires, we would need @
robust dataset containing upwards of 10,000 fires in daylight,
which we could use for retraining.

References

1. Fire.ca.gov, “2025 Fire Incident Reports.”

2. AARP, “Guide to Video Doorbells,” 2024.

3. Thompson, "Efficient and Compact CNN Architectures for
Real-time Fire Detection,” ICMLA, IEEE, 2020.




